Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.497
Filtrar
1.
J Oral Implantol ; 50(1): 31-38, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579114

RESUMO

The aim of this study was to evaluate the mechanical behavior of UCLA and Mini-conical abutments for implants with Tri-channel connections regarding torque loss and vertical misfit. Twenty 3-element metal-ceramic fixed partial dentures (FPD) supported by 2 implants were manufactured and divided into 2 groups (n = 10): UCLA (group 1) and Mini-conical Abutments (group 2). The evaluation of torque loss was carried out before and after mechanical cycling, while the vertical fit was evaluated throughout the different stages of manufacturing the prostheses, as well pre- and postcycling (300,000 cycles, 30 N). Statistical analyses of torque loss and vertical misfit were performed using the linear mixed effects model. Both groups showed torque loss after mechanical cycling (P < .05); however, there was no significant percentage differences between them (P = .795). Before cycling, the groups showed a significant difference in terms of vertical misfit values (P < .05); however, this difference was no long observed after cycling (P = .894). Both groups showed torque loss after the cycling test, with no significant difference (P > .05). There was no significant difference in vertical misfit after mechanical cycling; however, in group 1 (UCLA) there was accommodation of the implant-UCLA abutment interface, while group 2 (Mini-conical abutment) did not show changes in the interface with the implant after the test. Both groups behaved similarly regarding the torque loss of the prosthesis retention screws pre- and postmechanical cycling, with greater loss after the test.


Assuntos
Implantes Dentários , Torque , Dente Suporte , Análise do Estresse Dentário , Retenção em Prótese Dentária , Projeto do Implante Dentário-Pivô
2.
BMC Oral Health ; 24(1): 396, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549137

RESUMO

BACKGROUND: The stability of implant-abutment connection is crucial to minimize mechanical and biological complications. Therefore, an assessment of the microgap behavior and abutment displacement in different implant-abutment designs was performed. METHODS: Four implant systems were tested, three with a conical implant-abutment connection based on friction fit and a cone angle < 12 ° (Medentika, Medentis, NobelActive) and a system with an angulated connection (< 40°) (Semados). In different static loading conditions (30 N - 90º, 100 N - 90º, 200 N - 30º) the microgap and abutment displacement was evaluated using synchrotron-based microtomography and phase-contrast radioscopy with numerical forward simulation of the optical Fresnel propagation yielding an accuracy down to 0.1 µm. RESULTS: Microgaps were present in all implant systems prior to loading (0.15-9 µm). Values increased with mounting force and angle up to 40.5 µm at an off axis loading of 100 N in a 90° angle. CONCLUSIONS: In contrast to the implant-abutment connection with a large cone angle (45°), the conical connections based on a friction fit (small cone angles with < 12°) demonstrated an abutment displacement which resulted in a deformation of the outer implant wall. The design of the implant-abutment connection seems to be crucial for the force distribution on the implant wall which might influence peri-implant bone stability.


Assuntos
Implantes Dentários , Síncrotrons , Humanos , Projeto do Implante Dentário-Pivô , Simulação por Computador , Dente Suporte , Análise do Estresse Dentário
3.
Dent Mater ; 40(3): 493-499, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176998

RESUMO

OBJECTIVES: To evaluate torque maintenance and structural damage in implant components of different diameters subjected to a fatigue challenge. METHODS: Thirty 10-mm-long, morse taper connection, titanium dental implants and their corresponding one-piece abutments were divided into three groups (n = 10) according to implant diameter: 4.3 mm (I4.3), 3.5 mm (I3.5), and 2.9 mm (I2.9). The implants were placed into a load-bearing fixture simulating bone tissue (modified G10), and the abutments were screwed into the implants to a final torque of 20 Ncm for the I4.3 and I3.5 and 15 Ncm for I2.9. The torque was secured by a digital torque meter. Cone-beam computed tomography (CBCT) scans were acquired and post-processed (e-Vol DX software) for all implant/abutment sets before and after subjecting them to fatigue in 37 °C distilled water (2 million cycles, constant load and frequency). The removal torque was measured using the same digital torque meter to calculate the difference in torque before and after fatigue. RESULTS: I2.9 showed substantial structural deformation compared with the other implant diameters (I3.5 and I4.3). However, the experimental groups did not show statistical differences for abutment loosening. SIGNIFICANCE: Implants smaller than 3.5 mm in diameter have a higher probability of structural deformation than standard-diameter implants. The association between tomographic scans and e-Vol DX software showed satisfactory consistency with the direct assessment using the digital torque meter, offering an additional tool to evaluate implant component loosening and structural deformations.


Assuntos
Implantes Dentários , Projeto do Implante Dentário-Pivô , Torque , Dente Suporte , Análise do Estresse Dentário
5.
São José dos Campos; s.n; 2024. 86 p. ilus, tab.
Tese em Português | LILACS, BBO - Odontologia | ID: biblio-1551231

RESUMO

A eficácia dos implantes osseointegrados é amplamente reconhecida na literatura científica. Contudo, infiltrações bacterianas na junção implante-pilar podem desencadear inflamação nos tecidos circundantes, contribuindo para a evolução de condições mais sérias, como a peri-implantite. O objetivo desse estudo foi produzir complexos polieletrólitos (PECs) de quitosana (Q) e xantana (X) em forma de membranas, carregá-las com ativos naturais e sintéticos antimicrobianos, caracterizálas estruturalmente e avaliá-las frente a degradação enzimática, cinética de liberação e ações antimicrobianas com finalidade de aplicação para drug delivery. Membranas de QX a 1% (m/v) foram produzidas em três proporções, totalizando doze grupos experimentais: QX (1:1); QX (1:2), QX (2:1), QX-P (com própolis) (1:1); QX-P (1:2); QX-P (2:1); QX-C (com canela) (1:1); QX-C (1:2); QX-C (2:1) e CLX (com clorexidina 0,2%) (1:1); CLX (1:2); CLX (2:1). Para os estudos de caracterização foram feitas análises da espessura em estado seco; análises morfológicas superficial e transversal em Microscopia Eletrônica de Varredura (MEV); análise estrutural de espectroscopia de infravermelho por transformada de Fourier (FTIR); análise de degradação por perda de massa sob ação da enzima lisozima; e análise da cinética de liberação dos ativos em saliva artificial. Para os testes microbiológicos, análises de verificação de halo de inibição e ação antibiofilme foram feitas contra cepas de Staphylococcus aureus (S. aureus) e Escherichia coli (E. coli). Os resultados demonstraram que a espessura das membranas variou conforme a proporção, sendo que o grupo QX (1:2) apresentou a maior média de 1,022 mm ± 0,2, seguida respectivamente do QX (1:1) com 0,641 mm ± 0,1 e QX (2:1) com 0,249 mm ± 0,1. Nas imagens de MEV é possível observar uma maior presença de fibras, rugosidade e porosidade nos grupos QX (1:2) e QX (1:1) respectivamente, e, no QX (2:1) uma superfície mais lisa, uniforme e fina. No FTIR foram confirmados os picos característicos dos materiais isoladamente, além de observar as ligações iônicas que ocorreram para formação dos PECs. Na análise de degradação, os grupos com ativos naturais adicionados tiveram melhores taxas de sobrevida do que os grupos QX. No teste de liberação, os grupos QX-P tiveram uma cinética mais lenta que os QX-C, cuja liberação acumulada de 100% foi feita em 24 h. Já nos testes do halo inibitório, somente os grupos CLX tiveram ação sobre as duas cepas, e os QX-P tiveram sobre S. aureus. Nas análises antibiofilme, os grupos CLX apresentaram as maiores taxas de redução metabólica nas duas cepas (± 79%); os grupos QX-P apresentaram taxas de redução similares em ambas as cepas, porém com percentual um pouco maior para E. coli (60- 80%) e os grupos QX-C tiveram grande discrepância entre as duas cepas: de 35 a 70% para S. aureus e 14 a 19% para E. coli. Pode-se concluir que, frente as análises feitas, o comportamento do material foi afetado diretamente pelos ativos adicionados a matriz polimérica. As proporções de Q ou X afetaram somente a espessura final. Quanto a aplicação proposta de drug delivery, os dispositivos apresentaram grande potencial, principalmente os grupos CLX e QX-P. (AU)


The effectiveness of osseointegrated implants is widely recognized in scientific literature. However, bacterial infiltrations at the implant-abutment interface may trigger inflammation in surrounding tissues, contributing to the development of more serious conditions, such as peri-implantitis. The aim of this study was to produce chitosan (Q) and xanthan (X) polyelectrolyte complexes (PECs) in the form of membranes, load and evaluate them for enzymatic degradation, release kinetics, and antimicrobial actions for drug delivery applications. QX membranes at 1% (w/v) were produced in three proportions, totaling twelve experimental groups: QX (1:1), QX (1:2), QX (2:1), QX-P (with propolis) (1:1), QX-P (1:2), QX-P (2:1), QX-C (with cinnamon) (1:1), QX-C (1:2), QX-C (2:1), and CLX (with 0.2% chlorhexidine) (1:1), CLX (1:2), CLX (2:1). Characterization studies included analyses of dry state thickness, surface and crosssectional morphology using Scanning Electron Microscopy (SEM), structural analysis by Fourier Transform Infrared (FTIR) spectroscopy, mass loss degradation analysis under lysozyme action, and active release kinetics analysis in artificial saliva. Microbiological tests included verification analyses of inhibition halos and antibiofilm action against strains of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Results showed that membrane thickness varied according to proportion, with group QX (1:2) presenting the highest average of 1.022 mm ± 0.2, followed by QX (1:1) with 0.641 mm ± 0.1, and QX (2:1) with 0.249 mm ± 0.1. SEM images showed greater presence of fibers, roughness, and porosity in groups QX (1:2) and QX (1:1) respectively, while QX (2:1) exhibited a smoother, more uniform, and thinner surface. FTIR confirmed characteristic peaks of the materials individually, besides showing ionic bonds formed for PECs. Degradation analysis revealed that groups with added natural actives had better survival rates than QX groups. In release tests, QX-P groups exhibited slower kinetics than QX-C, with 100% cumulative release achieved in 24 h. inhibitory halo tests, only CLX groups exhibited action against both strains, while QX-P acted against S. aureus. Antibiofilm analyses showed CLX groups with the highest metabolic reduction rates in both strains (± 79%); QX-P groups showed similar reduction rates in both strains, slightly higher for E. coli (60-80%), and QX-C groups had a significant discrepancy between strains: 35-70% for S. aureus and 14-19% for E. coli. In conclusion, material behavior was directly affected by added actives to the polymeric matrix. Proportions of Q or X only affected final thickness. Regarding proposed drug delivery applications, the devices showed great potential, especially CLX and QX-P groups.(AU)


Assuntos
Sistemas de Liberação de Medicamentos , Quitosana , Projeto do Implante Dentário-Pivô , Compostos Fitoquímicos , Polieletrólitos
6.
Braz Dent J ; 34(6): 140-149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38133088

RESUMO

This study aimed to evaluate the influence of material and crown design on the biomechanical behavior of implant-supported crowns with hybrid abutment (HA) through three-dimensional (3D) finite element analysis. The study factors were the type of material used as the mesostructure or crown (zirconia, lithium disilicate, and hybrid ceramic) and the crown design cemented to the titanium base (mesostructure cemented to the titanium base and a crown cemented on it (HaC); hybrid crown-abutment, the abutment and crown are manufactured as a single piece and cemented to the titanium base (HC); monolithic crown cemented on the titanium base and screwed to the implant (CS); and monolithic crown cemented on the titanium base (CC). Four 3D models were constructed using an implant with an internal connection, and an oblique load of 130 N was applied at 45° to the long axis of the implant. The models were evaluated using the von Mises stress for crown, abutment, screw, and implant and maximum principal stress for bone tissues. The lowest stresses occurred in the groups with a lower elastic modulus material, mainly hybrid ceramics, considered a material with greater resilience. The cemented crown group presented the lowest stress values. The stresses were concentrated in the cervical region of the crown at the titanium crown/base interface. Mesostructures made of materials with a higher elastic modulus exhibited a higher concentration of stress. The presence of a screw hole increased the stress concentration in the ceramic crown. Cemented ceramic crowns exhibited better biomechanical behavior than screw-retained crowns.


Assuntos
Coroas , Titânio , Análise de Elementos Finitos , Titânio/química , Cerâmica/química , Zircônio/química , Análise do Estresse Dentário , Teste de Materiais , Projeto do Implante Dentário-Pivô , Desenho Assistido por Computador
7.
Int J Oral Maxillofac Implants ; 38(5): 1014-1024, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847843

RESUMO

PURPOSE: To compare the fit of 3D-printed titanium (Ti) and cobalt-chromium (Co-Cr) abutments with implants to computer numerical control (CNC)-milled, ready-made abutment-implant assemblies. Their clinical applicability was also evaluated by measuring removal torque values (RTVs) and percentage torque loss of abutment screws. MATERIALS AND METHODS: A total of 138 abutments were included in the study: 92 abutments were fabricated with Ti and Co-Cr alloys using computer-assisted design (CAD) through selective laser melting, and 46 ready-made abutments were prepared. The fit of interfaces between 90 abutments from the three groups (30 ready-made, 30 3D-printed Ti, and 30 3D-printed Co-Cr abutments) and implant assemblies was demonstrated by scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). After 30-Ncm torque tightening of Ti abutment screws twice within 10 minutes, the RTVs and percentage torque loss of screws of 48 abutments (16 ready-made, 16 3D-printed Ti, and 16 3D-printed Co-Cr) were evaluated after 10 minutes of thermocycling and cyclic loading. RESULTS: The fits of 3D-printed Co-Cr abutments were not statistically different from those of ready-made abutments (P = .383), while the fit of 3D-printed Ti abutments was inadequate (P < .001). The RTVs of 3D-printed abutments after cyclic loading were significantly decreased compared with those of CNC-milled abutments (P < .001). CONCLUSION: The fit of interfaces between 3D-printed Co-Cr abutments and implants was adequate. The RTVs of 3D-printed Co-Cr abutments were not significantly different from those of CNC-milled abutments after 10 minutes of 30-Ncm torque tightening and thermocycling.


Assuntos
Ligas de Cromo , Dente Suporte , Implantes Dentários , Titânio , Cobalto , Projeto do Implante Dentário-Pivô , Análise do Estresse Dentário , Teste de Materiais , Impressão Tridimensional , Torque
8.
Dent Med Probl ; 60(3): 497-503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37815514

RESUMO

BACKGROUND: Polyetherketoneketone (PEKK) was recently introduced as an alternative to titanium and ceramic implant abutments due to its apparent ability to dissipate excessive strain around dental implants. However, the biomechanical behaviors of implant abutment crown systems may change depending on the crown and abutment material combinations used. OBJECTIVES: This study aimed to assess how the crown material affects strain generation and fracture resistance of PEKK hybrid abutment crowns. MATERIAL AND METHODS: Sixteen dummy implants (Ø 3.7 x 11 mm), simulating maxillary first premolars, were restored with 16 milled PEKK hybrid abutments and randomly categorized into two groups according to the crown material (n = 8): Group C, milled composite crowns cemented on PEKK hybrid abutments; and Group Z, ultra-translucent zirconia crowns cemented on PEKK hybrid abutments. Before thermocycling, a cyanoacrylate-base adhesive was used to position two strain gauges on buccal and lingual crestal bone surfaces, and a vertical load (100 N) was applied to the central fossa to record the strain generated. Then, all samples were thermocycled between 5°C and 55°C before being loaded to fracture on a universal testing machine. Modes of failure were observed under an optical microscope, and representative samples were examined using a scanning electron microscope. Independent t-tests were used for intergroup comparisons. The significance level was set at (p < 0.05) for all tests.. RESULTS: The results showed a significant difference between both groups. The zirconia group recorded significantly higher strain and fracture resistance values than the composite group (p < 0.001). There was a positive correlation between the strain developed in peri-implant crestal bone and fracture resistance of the abutment crown complex. CONCLUSIONS: Strains developed in both groups were within the acceptable clinical range. The crown material substantially impacted the strain and fracture of the PEKK hybrid abutment crown system.


Assuntos
Implantes Dentários , Humanos , Projeto do Implante Dentário-Pivô/métodos , Coroas
9.
Clin Oral Implants Res ; 34(12): 1330-1341, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37655630

RESUMO

OBJECTIVES: To compare the clinical, radiographic, and immunological outcomes between one-piece versus two-piece zirconia abutments supported single implant crowns in the esthetic region. MATERIALS AND METHODS: The study followed a split-mouth, double-blind, and randomized controlled clinical design for a duration of 3 years. Twenty-two eligible patients with 44 implants were randomly assigned to two groups: Group 1 (one-piece zirconia abutment with zirconia base, n = 22) and Group 2 (two-piece zirconia abutment with titanium base, n = 22). The primary outcome was the technical complication rate. Additionally, survival rates, cytokines concentrations in peri-implant crevicular fluid (PICF), peri-implant conditions, marginal bone loss, and pink/white esthetics score (PES/WES) were assessed as secondary outcomes. RESULTS: Twelve of 22 patients attended the 1-year follow-up (due to the COVID pandemic), and 19 patients attended the 3-year examination. Two abutments in Group 1 were fractured after 10 and 12 months in function. Additionally, one screw loosening occurred in Group 1 at 1-year follow-up. The 3-year technical complication rate was significantly higher in Group 1 than that in Group 2 (15.79% vs. 0%, p < .001). The 3-year implant survival rate was 100% in both groups. The concentration of IFN-γ in PICF was significantly upregulated in Group 2 (p = .018). Furthermore, the IL-6 concentration was positively correlated with BOP% (p = .020). CONCLUSIONS: Two-piece zirconia abutments exhibited superior technical performance compared to one-piece designs during a 3-year follow-up in the anterior region. However, further long-term research is necessary to verify the immunological stability of two-piece zirconia abutments.


Assuntos
Implantes Dentários para Um Único Dente , Implantes Dentários , Humanos , Falha de Restauração Dentária , Dente Suporte , Estética Dentária , Coroas , Zircônio , Boca , Titânio , Projeto do Implante Dentário-Pivô
10.
J Prosthet Dent ; 130(5): 741.e1-741.e9, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689572

RESUMO

STATEMENT OF PROBLEM: Screw access channels that emerge on the facial aspect of anterior screw-retained implant crowns can compromise esthetics. Recently, angled screw channels (ASCs) have been developed that can alter screw access channel angulations to improve esthetics. While ASCs can be used on narrow-diameter implants, information is limited on the loss of abutment screw torque on narrow-diameter implants with ASCs. PURPOSE: The purpose of this in vitro study was to compare the loss of abutment screw torque after thermocycling and the cyclic loading of ASCs from 3 different companies connected to narrow-diameter implants. MATERIAL AND METHODS: A total of 40 narrow-diameter implants (NobelReplace Conical Connection 3.5×11.5 mm) were mounted individually in acrylic resin blocks and divided equally into 4 groups. The first group, NB-0 (Control), consisted of screw-retained zirconia crowns fabricated on ASCs at 0-degree angulation (n=10). The other 3 groups consisted of a total of 30 screw-retained zirconia crowns fabricated on ASCs at 20-degree angulation: NB-20 (Angulated Screw Channel Solutions), ATL-20 (Atlantis Custom Base Solution with angulated screw access), and DA-20 (Dynamic TiBase). Each crown was secured on the mounted implant with its corresponding titanium base insert and screw and then tightened to the manufacturer's recommended torque with a digital torque gauge. The initial reverse torque value (RTVI) was obtained and recorded at baseline. Subsequently, a new set of screws were tightened to recommended values, and each specimen underwent thermocycling and then cyclic loading at 0 to 100 N at 10 Hz for 1 million cycles to simulate 1year of functional loading. After cyclic loading, the final reverse torque values (RTVF) were recorded and compared with the RTVI to evaluate the percentage torque loss (PTLF). Statistical analysis was performed using the Kruskal-Wallis analysis, Rank base analysis of covariance (ANCOVA), and the Tukey HSD post hoc comparisons (α=.05). RESULTS: Significant differences were found for the PTLF among all groups after cyclic loading (P<.001). The PTLF in ATL-20 (51.4%) was significantly higher than in NB-0 (22.2%) (P<.001) and NB-20 (29.2%) (P=.010). No significant difference was found in the PTLF among other groups (P>.05). CONCLUSIONS: The abutment screw torque loss after cyclic loading of the ASCs on narrow diameter implants among the 4 groups did not perform comparably. The largest percentage torque loss was recorded for the ATL-20 group. The NB-20 group demonstrated the lowest percentage torque loss. DA-20 showed percentage torque loss less than ATL-20; however, its RTVF was the lowest.


Assuntos
Implantes Dentários , Torque , Análise do Estresse Dentário/métodos , Projeto do Implante Dentário-Pivô , Dente Suporte , Estética Dentária , Coroas , Parafusos Ósseos
11.
J Prosthet Dent ; 130(5): 738.e1-738.e8, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37739883

RESUMO

STATEMENT OF PROBLEM: Technical complications, including abutment fracture, are a clinical reality. After retrieving failed components, re-establishing a reliable implant-abutment connection is essential, but recommendations on how to clean the interface are lacking. PURPOSE: The purpose of this in vitro study was to evaluate different clinical debridement strategies for removing titanium powder from an implant-abutment interface with regard to their efficacy and associated risk of damaging the interface. MATERIAL AND METHODS: Specimens (n=5) were assembled from previously cut implant halves, which were then contaminated by placing titanium powder inside the implant-abutment connection. Activated rinsing, airflow, and an ultrasound scaler, as well as combinations thereof, were then used to clean the implant-abutment connections. Both parts of each specimen were rated under a light microscope with respect to contamination and damage. In addition, abutments were placed in intact implants (n=10), which had previously been contaminated and cleaned, to record torque curves and abutment stability. Statistical analysis of ratings was based on Kruskal-Wallis tests and the Nemenyi All Pairs test with single-step P value correction, while abutment stability and torque were analyzed using analysis of variance and Tukey HSD tests (α=.05). RESULTS: Erythritol as an abrasive medium led to significantly greater contamination than the scaler (P=.002), activated rinsing (P=.021), and airflow with sodium bicarbonate combined with either conventional (P=.002) or activated rinsing (P=.007). Greater damage was also observed with erythritol because of accumulations of the abrasive media, while scratches were seen after scaler application. Airflow using sodium bicarbonate in combination with activated rinsing showed the lowest level of damage (versus scaler P=.030). Using conventional (P=.010) or activated (P=.029) rinsing, airflow treatment led to a significant reduction in contamination. The scaler led to a significant decrease in abutment stability (P=.048), while activated rinsing and the combination of airflow and activated rinsing did not significantly affect abutment stability. Abutments placed in implants previously contaminated and cleaned required greater torque as compared with original implants (versus activated rinsing, P=.009). CONCLUSIONS: Activated rinsing constituted the best technique for cleaning implant-abutment connections. Cleaning efficiency can be enhanced with airflow using sodium bicarbonate as an abrasive medium.


Assuntos
Implantes Dentários , Projeto do Implante Dentário-Pivô , Titânio , Desbridamento , Pós , Bicarbonato de Sódio , Eritritol , Dente Suporte , Torque , Teste de Materiais , Análise do Estresse Dentário
12.
J Prosthet Dent ; 130(4): 604.e1-604.e5, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633730

RESUMO

STATEMENT OF PROBLEM: Implant manufacturers have introduced titanium base (Ti-Base) abutments with increased abutment heights, ostensibly, to increase the retention of the bonded restoration and to improve overall strength. However, evidence regarding the effects of increasing Ti-Base height on improving retention is lacking. PURPOSE: The purpose of this in vitro study was to evaluate the effect of different Ti-Base abutment heights on the retention of zirconia implant-supported crowns. MATERIAL AND METHODS: Thirty Ti-Base abutments of the same diameter and heights of 3.5 mm (n=10), 4.5 mm (n=10), and 5.5 mm (n=10), were used for testing. Zirconia restorations were cemented onto the Ti-Base abutments with a resin cement after treatment with a 10-methacryloyloxydecyl dihydrogen phosphate primer by a single operator using a positioning device. The zirconia-Ti-Base restorations were tightened to an implant analog embedded in an autopolymerizing resin block. The specimens were placed and tested in a universal testing machine for pull-out testing. Retention was measured by recording the force at load drop. Statistical analysis was performed using 1-way analysis of variance with the Tukey method for pairwise comparisons. RESULTS: The abutment height had a significant effect on retention (P=.010). Ti-Base abutments of 4.5 and 5.5 mm had significantly greater retention than Ti-Base abutments of 3.5 mm (P=.020, P=.040, respectively). However, Ti-Base abutments of 4.5 and 5.5 mm in height were statistically similar (P=.890). CONCLUSIONS: An increase in the height of Ti-Base abutments above the standard 3.5 mm height significantly improved the retention of the overlying restoration.


Assuntos
Coroas , Titânio , Zircônio , Cimentos de Resina/uso terapêutico , Dente Suporte , Teste de Materiais , Análise do Estresse Dentário , Projeto do Implante Dentário-Pivô
13.
Clin Oral Investig ; 27(10): 5887-5894, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37608240

RESUMO

OBJECTIVES: Bone resorption around implants could influence the resistance of the implant abutment complex (IAC). The present in vitro study aimed to assess the stability to static fatigue of implants presenting different levels of bone losses and diameters. MATERIALS AND METHODS: Ninety implants with an internal conical connection with 3 different implant diameters (3.3 mm (I33), 3.8 mm (I38), and 4.3 mm (I43)) and 3 simulated bone loss settings (1.5 mm (I_15), 3.0 mm (I_30), and 4.5 mm (I_45) (n = 10)) were embedded and standard abutments were mounted. All specimens were artificially aged (1,200,000 cycles, 50 N, simultaneous thermocycling) and underwent subsequently load-to-fracture test. For statistical analysis, Kolmogorov-Smirnov test, Kruskal-Wallis test, and Mann-Whitney U test (p < 0.05) were applied. RESULTS: All test specimens withstood the artificial aging without damage. The mean failure values were 382.1 (± 59.2) N (I3315), 347.0 (± 35.7) N (I3330), 315.9 N (± 30.9) (I3345), 531.4 (± 36.2) N (I3815), 514.5 (± 40.8) N (I3830), 477.9 (± 26.3) N (I3845), 710.1 (± 38.2) N (I4315), 697.9 (± 65.2) N (I4330), and 662.2 N (± 45.9) (I4345). The stability of the IACs decreased in all groups when bone loss inclined. Merely, the failure load values did not significantly differ among subgroups of I43. CONCLUSIONS: Larger implant diameters and minor circular bone loss around the implant lead to a higher stability of the IAC. The smaller the implant diameter was, the more the stability was affected by the circumferential bone level. CLINICAL RELEVANCE: Preserving crestal bone level is important to ensure biomechanical sustainability at implant systems with a conical interface. It seems sensible to take the effect of eventual bone loss around implants into account during implant planning processes and restorative considerations.


Assuntos
Reabsorção Óssea , Implantes Dentários , Humanos , Projeto do Implante Dentário-Pivô , Dente Suporte , Análise do Estresse Dentário , Titânio
14.
Clin Oral Implants Res ; 34(11): 1248-1256, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37578653

RESUMO

OBJECTIVES: To investigate the effect of implant-abutment connection and screw channel angle on screw stability by comparing a newly introduced and an established connection, before and after cyclic loading. MATERIALS AND METHODS: Implants (N = 44) with Torcfit (TF) or Crossfit (CF) connection were divided to be restored with a straight (CFS and TFS) or an angled screw access channel (CFA and TFA) titanium-base abutment (n = 11). CFA and TFA received screw-retained crowns, whereas CFS and TFS received hybrid zirconia abutments and cement-retained crowns. The initial torque value (ITV) of each complex (ITVI ) and removal torque value (RTV) after 24 h (RTVI ) were measured. Screws were replaced with new ones, ITVs were recorded again (ITVF ), and crowns were cyclically loaded (2.4 million cycles, 98 N) to measure RTVs again (RTVF ). Percentage torque loss was calculated. Data were analyzed (α = 0.05). RESULTS: ITVs were similar among groups (p ≥ .089). CF led to higher RTVs (p ≤ .002), while CFS had higher RTVI than CFA (p = .023). After 24 h, CFS had lower percentage torque loss than TF, while CFA had lower percentage torque loss than TFA (p ≤ .011). After cyclic loading, CF led to lower percentage torque (p < .001). CONCLUSION: The implant-abutment connection affected the removal torque values. However, no screw loosening occurred during cyclic loading, which indicated a stable connection for all groups. Screw access channel angle did not affect screw stability after cyclic loading.


Assuntos
Cimentos Dentários , Implantes Dentários , Análise do Estresse Dentário , Coroas , Parafusos Ósseos , Torque , Titânio , Dente Suporte , Projeto do Implante Dentário-Pivô , Teste de Materiais
15.
J Oral Implantol ; 49(4): 393-400, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527179

RESUMO

This in vitro study evaluated the mechanical behavior of different conical connection implant systems after abutment screw withdrawal. Four conical connection systems were selected based on different conical half-angles: Ankylos (5.7°), Cowell (7.0°), Straumann (7.5°), and Astra (11.0°). In each system, 5 implants and abutments were used (n = 5). According to the recommended value, each abutment screw was torqued to settle the abutment and then withdrawn through a predesigned hole of the cemented crown. The retentiveness of the abutment was evaluated by the following mechanical testing. All specimens were subjected to cyclic loading of 20-200 N, 30°, and 4-mm off-axis to the implant axis, for 106 cycles. The pullout forces and axial displacements of the abutments were measured. The data of the Cowell system was obtained from our previous work. All groups other than Astra group, in which abutment loosened after abutment screw withdrawal, passed the cyclic loading test. Straumann group demonstrated a significantly lower pullout force (27.4 ± 21.1 N) than Ankylos (160.1 ± 41.4 N) and Cowell (183.7 ± 30.5 N) groups. All groups showed abutment rebound after screw withdrawal except Straumann group. In addition, Ankylos, Cowell, and Straumann groups demonstrated axial displacement after cyclic loading. In terms of the retentiveness of the abutment after abutment screw withdrawal examined in this study, Ankylos and Cowell groups had much higher retentiveness than Straumann group, while Astra group had none. Conical angle could be a key design parameter to make abutment screw withdrawal after conical abutment settlement feasible, but more studies must be conducted for clinical application.


Assuntos
Projeto do Implante Dentário-Pivô , Implantes Dentários , Análise do Estresse Dentário , Torque , Parafusos Ósseos , Dente Suporte , Teste de Materiais
16.
Dent Mater ; 39(9): 846-859, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537095

RESUMO

OBJECTIVES: Trans-mucosal platforms connecting the bone-anchored implants to the prosthetic teeth are essential for the success of oral rehabilitation in implant dentistry. This region promotes a challenging environment for the successfulness of dental components due to the transitional characteristics between soft and hard tissues, the presence of bacteria, and mechanical forces. This review explored the most current approaches to modify trans-mucosal components in terms of macro-design and surface properties. METHODS: This critical review article revised intensely the literature until July 2023 to demonstrate, discuss, and summarize the current knowledge about marketable and innovative trans-mucosal components for dental implants. RESULTS: A large number of dental implant brands have promoted the development of several implant-abutment designs in the clinical market. The progress of abutment designs shows an optimistic reduction of bacteria colonization underlying the implant-abutment gap, although, not completely inhibited. Fundamental and preclinical studies have demonstrated promising outcomes for altered-surface properties targeting antibacterial properties and soft tissue sealing. Nanotopographies, biomimetic coatings, and antibiotic-release properties have been shown to be able to modulate, align, orient soft tissue cells, and induce a reduction in biofilm formation, suggesting superior abilities compared to the current trans-mucosal platforms available on the market. SIGNIFICANCE: Future clinical implant-abutments show the possibility to reduce peri-implant diseases and fortify soft tissue interaction with the implant-substrate, defending the implant system from bacteria invasion. However, the absence of technologies translated to commercial stages reveals the need for findings to "bridge the gap" between scientific evidences published and applied science in the industry.


Assuntos
Implantes Dentários , Peri-Implantite , Dente , Humanos , Peri-Implantite/prevenção & controle , Dente Suporte , Projeto do Implante Dentário-Pivô
17.
Clin Oral Implants Res ; 34(11): 1217-1229, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37565379

RESUMO

OBJECTIVE: To analyze the influence of titanium-base (straight [SSC]/angulated-screw-channel [ASC]) on failure-loads and bending-moments of two-piece ceramic and titanium-zirconium implants restored with monolithic-zirconia crowns after fatigue. MATERIALS AND METHODS: Thirty-two anterior monolithic-screw-retained zirconia crowns were divided into four groups (n = 8/group) according to the factors: (1) type of implant material: two-piece titanium-zirconium implant (Ti-Zr; control-group) versus two-piece ceramic implant (CI; test-group) and (2) type of titanium-base: SSC (0° angle) versus ASC (25°). An intact implant was used for field emission gun-scanning electronic microscopy (FEG-SEM) characterization and Raman spectroscopy for phase analyses and residual stress quantification. All samples were exposed to fatigue with thermodynamic loading (1.2-million-cycles, 49 N, 1.6 Hz, 5-55°C) at a 30° angle. Surviving specimens were loaded until failure (SLF) and bending moments were recorded. Failed samples were examined using light microscope and SEM. Statistical analyses included ANOVA and Mann-Whitney U-test. RESULTS: Raman-spectroscopy revealed the presence of residual compressive stresses. FEG-SEM revealed a roughened surface between threads and polished surface at the cervical-collar of the ceramic implant. All samples survived fatigue and were free of complications. Mean bending-moments (±SD) were: Ti-Zr-0: 241 ± 45 N cm, Ti-Zr-25: 303 ± 86 N cm, CI-0: 326 ± 58 N cm, CI-25: 434 ± 71 N cm. Titanium-base and implant-material had significant effects in favor of ASC titanium bases (p = .001) and ceramic-implants (p < .001). Failure analysis after SLF revealed severe fractures in ceramic implants, whereas titanium implants were restricted to plastic deformation. CONCLUSIONS: Ceramic and titanium implants exhibited high reliability after fatigue, with no failures. From a mechanical perspective, titanium bases with ASC can be recommended for both ceramic and titanium implants and are safe for clinical application.


Assuntos
Implantes Dentários , Zircônio , Zircônio/química , Titânio/química , Reprodutibilidade dos Testes , Teste de Materiais , Dente Suporte , Projeto do Implante Dentário-Pivô , Falha de Restauração Dentária , Cerâmica/química , Coroas , Parafusos Ósseos
18.
Clin Oral Implants Res ; 34(10): 1015-1024, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37461127

RESUMO

OBJECTIVE: To analyze the influence of 3-mm high abutments with different shapes (cylindrical abutment vs. wide abutment) on marginal bone-level changes (bone loss and bone remodeling). The influence of abutment shape on implant success, probing pocket depth (PPD), and bleeding on probing (BoP) was studied as secondary objectives. MATERIALS AND METHODS: Patients with a partially edentulous area requiring fixed dental prostheses by two implants in the posterior mandible or maxilla were included. The implants were 1 mm subcrestally placed, and osseointegration healing was submerged. Three-mm high abutments with two different shapes were randomly placed in second-stage surgery: cylindrical abutments (cylindrical group) and wide abutments (wide group). Marginal bone-level changes were measured using parallelized periapical radiographs at abutment placement, at definitive prosthesis placement, and at 1, 3, 6, and 12 months after loading. PPD and BoP were likewise measured at the control visits. RESULTS: Sixty-four dental implants in 25 patients were included. Statistically significant differences were found in bone-level changes. The cylindrical group exhibited less mean marginal bone remodeling (MBR) and marginal bone loss (MBL) than the wide group (p < .05). Moreover, the cylindrical group showed significantly less BoP (p < .05). CONCLUSION: Abutment shape had a significant influence upon marginal bone-level changes during the first 12 months. Cylindrical abutments caused less MBR and MBL than wide abutments. More clinical studies involving longer follow-ups and analyzing other abutment modifications are needed to improve our understanding of how abutments can affect peri-implant tissue stability.


Assuntos
Perda do Osso Alveolar , Dente Suporte , Implantes Dentários , Carga Imediata em Implante Dentário , Humanos , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/etiologia , Projeto do Implante Dentário-Pivô/efeitos adversos , Implantação Dentária Endóssea/efeitos adversos , Maxila/cirurgia , Osseointegração
19.
Proc Inst Mech Eng H ; 237(8): 975-984, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37458260

RESUMO

Failure by fatigue can be sudden and catastrophic. Therefore, ensuring that dental implants, which are under constant cyclic loading, do not fail to fatigue is imperative. The majority of the studies about the topic only performed in vitro tests, which are expensive and time-consuming. The Finite Element (FE) method is less costly and it allows the simulation of several different loading scenarios. Nonetheless, there are only a few studies analysing fatigue in dental prostheses using FE models, and the few available did not include all the relevant parameters, such as geometry effect, surface finishing, etc. Therefore, this study aimed to analyse the fatigue behaviour of a single-unit dental implant with two screws using a combination of the numerical results and the traditional fatigue criteria - a combination that was not yet fully and correctly explored. A finite element model comprising a single implant, one abutment, one abutment screw, one fixation screw and one prosthetic crown was developed. Material properties were assigned based on literature data. A 100 N load was applied to mimic the mastication forces and fatigue analysis was conducted using the Gerber, Goodman and Soderberg fatigue criteria. The fatigue analysis demonstrated that the abutment screw could fail in less than 1 year, depending on the criteria, while the fixation screw exhibits an infinite life. The results illustrated the importance of analysing the fatigue behaviour of dental implants and highlighted the potential of finite element models to simulate the biomechanical behaviour of dental implants.


Assuntos
Implantes Dentários , Análise de Elementos Finitos , Simulação por Computador , Força de Mordida , Parafusos Ósseos , Análise do Estresse Dentário , Dente Suporte , Projeto do Implante Dentário-Pivô , Estresse Mecânico
20.
J Prosthet Dent ; 130(3): 380.e1-380.e9, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37482534

RESUMO

STATEMENT OF PROBLEM: Titanium base (TiBase) abutments to restore an implant-supported single crown are available in different gingival heights, but information on the biomechanical effects of the gingival heights is lacking. PURPOSE: The purpose of this nonlinear finite element analysis study was to evaluate the effects of TiBase gingival heights on the biomechanical behavior of custom zirconia (CustomZir) abutments and TiBase, including von Mises stress and maximum and minimum principal stress. MATERIAL AND METHODS: TiBases with different gingival heights (0.5 mm, 1 mm, 1.5 mm, and 2 mm) with internal hexagon Morse taper connections were simulated in 3-dimensional models. The simulations (ANSYS Workbench 2020; ANSYS Inc) included the OsseoSpeed EV implant (Ø5.4 mm) (AstraTech; Dentsply Sirona), restoration, and surrounding bone in the mandibular first molar region. An occlusal force of 200 N was applied with a 2-mm horizontal offset toward the buccal side and a 30-degree inclination from the vertical axis. RESULTS: High-stress concentration was observed in the uppermost internal connection area on the buccal side and the antirotational part of the titanium abutment on the lingual side in all models. CustomZir abutments with a shorter gingival height exhibited larger concentrated areas of volume average stress von Mises stress and higher magnitude of maximum and minimum principal stress compared with a taller gingival height. CONCLUSIONS: A TiBase abutment with a taller gingival height reduced the fracture risk of a CustomZir abutment without increasing any mechanical risk.


Assuntos
Implantes Dentários para Um Único Dente , Implantes Dentários , Projeto do Implante Dentário-Pivô , Titânio , Análise de Elementos Finitos , Estresse Mecânico , Dente Suporte , Análise do Estresse Dentário , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...